Співвідношення для косинусів і синусів кутів упросторі

Три косинуси

Теорема про три косинуси

AB — похила до площини p.
Ap ∈ , Bp ∉ , AC — проекція похилої AB на площину p. AD — довільна пряма площини p, BC p ⊥ , ∠BAC = α, ∠CAD = β, ∠BAD = γ,
тоді cosγ = cosα*cosβ
Три косинуси

Теорема про три синуси

Синус кута, утвореного прямою, яка лежить у площині однієї із граней двогранного кута, з іншою гранню, дорівнює добутку синуса двогранного кута на синус кута, який утворює ця пряма з ребром двогранного кута.

Тобто якщо ∠BAC— лінійний кут двогранного кута з ребром AD і ∠BAC = α, ∠BDA — кут між похилою BD та ребром AD і ∠BDA = β, ∠BDC — кут між похилою BD та площиною і ∠BDC = γ, то sinγ = sinα*sinβ

Теорема синусів для тригранного кута

Якщо α, β, γ — плоскі кути тригранного кута, A, B, C — протилежні їм двогранні кути, то виконується рівність
Теорема синусів для тригранного кута

Друга теорема косинусів для тригранного кута

Якщо A, B, C — двогранні кути тригранного кута, а α — протилежний C двогранний кут, то виконується рівністьДруга теорема косинусів для тригранного кута